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This is a collection of various bits and pieces that I have found about OTA so I have to look in only one

place. It was also motivated by the fact that the datasheets for commonly available OTA IC contain way

too much handwaving and errors, some of them not very easy to spot. Of course I’ve probably added some

errors of my own in this document, corrections and ideas for improvement are always welcome.

1 Preface

The OTA is popular for implementing voltage controlled oscillators (VCO) and filters (VCF) for
analog music synthesizers, because it can act as a two-quadrant multiplier as we’ll see later. For
this application the control input has to have a wide dynamic range of at least 60 dB, while the
OTA should behave sensibly when overdriven from the signal input (in particular, it should not
lock up or phase reverse). Viewed from a slightly different angle an OTA can be used to implement
an electrically tunable resistor that is referenced to ground, with extra circuitry floating resistors
are possible as well.

The primary application for an OTA is however to drive low-impedance sinks such as coaxial cable
with low distortion at high bandwith. Hence, “improved” OTA such as the MAX436 or OPA660
have optimized these characteristics, but made it either impossible (MAX436) or considerably
harder (OPA660) to use them as two-quadrant multipliers. Four quadrant multipliers on the other
hand are hideously expensive, so that “obsolete” OTA like the CA3080 are still in widespread use.

2 Principle of Operation

An OTA is a voltage controlled current source, more specifically the term “operational” comes
from the fact that it takes the difference of two voltages as the input for the current conversion.
The ideal transfer characteristic is therefore

IOut = gm(VIn+ − VIn−) (1)

or, by taking the pre-computed difference as the input,

IOut = gmVIn (2)

with the ideally constant transconductance gm as the proportionality factor between the two. In
reality the transconductance1 is also a function of the input differential voltage and dependent on
temperature, as we will later see.

To summarize, an ideal OTA has two voltage inputs with infinite impedance (i.e. there is no
input current). The common mode input range is also infinite, while the differential signal between
these two inputs is used to control an ideal current source (i.e. the output current does not depend
on the output voltage) that functions as an output. The proportionality factor between output
current and input differential voltage is called transconductance.

1The term “transconductance” comes about because the ratio of the output current over the input voltage, gm, has the unit of
a conductance if looked at “across the amplifier”. The proportional factor of output vs. input for an amplifier with current
input and voltage output has the unit of a resistance and such an amplifier is called a transresistance amplifier.
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Figure 1: Ideal OTA

Any real OTA will thus have circuitry to process the input voltages with low input current over
a wide common mode input range, to produce an internal representation of the input differential
voltage and to provide a current to the output that is relatively independent of the output volt-
age. Since an OTA can be used without feedback, the maximum output current and with it the
transconductance can often be adjusted.

2.1 The bipolar OTA

The most simple bipolar OTA consists of a differential pair to convert the input voltage difference
to two currents I+ and I−. These two currents are then mirrored to the output so that their
difference becomes the output of the OTA, while the rest of the OTA is made up of bias circuitry.
The truly great feature of this “long-tailed differential pair” as it is often called is that the tail
current, which is a necessary part of the biasing, can be used to control the transconductance as
we will see in a moment.

IC− IC+

IE− IE+

I0

IB+IB−
VIn− VIn+

Figure 2: Bipolar Differential Pair (with npn transistors, biasing not shown)

2.1.1 The bipolar differential pair

The collector current of an npn transistor is (with some simplifying assumptions) related to its
base-emitter voltage VBE by

IC = IS exp
VBE

VT
, (3)

with the temperature voltage (k is the Boltzmann constant and q the elementary charge)

VT =
kT

q
. (4)
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The collector current can also be expressed as a multiple of the base current, viewing the transistor
as a current amplifier with a gain of β,

IC = β IB, (5)

which makes the emitter current2

IE = −(IC + IB) = −(β + 1) IB. (6)

The tail current I0 of the differential pair is composed of the emitter currents of the individual
transistors.

I0 = IE+ + IE− (7)

I0 =
β+ + 1

β+
I+ +

β− + 1

β−
I− (8)

and finally with β+ � 1 and β− � 1 this simplifies to

I0 = I+ + I− (9)

This simply means that as long as β is sufficiently high, its exact value is not at all important.
Note however, that the β of a bipolar transistor is dependent on the collector current and therefore
exact matching of β+ and β− can only occur at zero differential input voltage. Furthermore at
low tail currents the error made in the simplification from (8) to (9) becomes quite noticeable as
β drops off from its maximum value. Nevertheless for now we’ll stick to the simplified equations
and proceed to combine (3) and (9) to

I0 = IS+ exp
VBE+

VT+
+ IS− exp

VBE−

VT−
. (10)

When the transistors are matched and at the same temperature this results in

I0 = IS

(
exp

VBE+

VT
+ exp

VBE−

VT

)
, (11)

which can be solved for IS to

IS =
I0

exp VBE+

VT
+ exp VBE−

VT

. (12)

The output current of the OTA is the difference of the two collector currents in the pair

IOut = I+ − I−, (13)

and using (3) and (12) this gives the rather unwieldy expression

IOut = I0

(
exp VBE+

VT

exp VBE+

VT
+ exp VBE−

VT

−
exp VBE−

VT

exp VBE+

VT
+ exp VBE−

VT

)
, (14)

which can be simplified to

IOut = I0

(
1

1 + exp VBE−−VBE+

VT

−
1

1 + exp VBE+−VBE−

VT

)
(15)

2Traditionally all currents for a single transistor are directed towards the crystal, hence the minus sign. The positive counting
current direction in a circuit is often different for various reasons.
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and further with VIn = VBE+ − VBE− to

IOut = I0

(
1

1 + exp−VIn

VT

−
1

1 + exp VIn

VT

)
. (16)

You’ll notice that the dependence on IS is gone, thanks to the matching of both transistors
and keeping them at the same temperature, but we’re still not having an explicit and compact
dependence on the input voltage. This is exactly what we’ll develop next and we start by extending
to the common denominator3:

IOut = I0


(
1 + exp VIn

VT

)
−
(
1 + exp−VIn

VT

)
(
1 + exp VIn

VT

)(
1 + exp−VIn

VT

)
 (17)

which reduces to

IOut = I0

(
exp VIn

VT
− exp−VIn

VT

2 + exp VIn

VT
+ exp−VIn

VT

)
(18)

which does not seem to look much better, but in fact this is

IOut = I0

2 sinh VIn

VT

2 + 2 cosh VIn

VT

(19)

which we find to correspond to (e.g. in [1])

IOut = I0 tanh
VIn

2VT
. (20)

This puts us into a much better position to find out what gm really is. The differential definition
of the transconductance is:

gm =
dIOut

dVIn
(21)

and with (20) we find

gm =
I0

2VT
sech2 VIn

2VT
. (22)

Thus we can finally show that the transconductance is anything but constant, depending both
on temperature and input voltage as has been stated earlier. The second term is a bell shaped
curve that equals 1 at zero input, falling off rapidly at both sides to asymptotically approach
zero. The practical input range depends on how much error4 one is willing to tolerate, but seldom
exceeds 20 mV. In fact, using (22) we find that to keep the linearity error below one percent (or
-40dB below the signal) the input range is limited to ±0.2VT or 5 mV at room temperature. The
maximum input range is approximately ±5VT , 125 mV at room temperature or equivalently 28 dB
of overdrive beyond the linear input range. Beyond this more than 99% of the tail current flows
through just one of the two transistors and no changes in the output can be effected. The limiting
action is comparably smooth, so overdriving an OTA from the input can be musically quite useful.

The temperature voltage in the argument of that term conspires to make the bell shape wider
at higher temperature, which means that the linear input range of the OTA is smaller at low
temperature as the gm drops off more rapidly from its maximum value. Often you’ll find just

3For the next steps you need to take a deep breath because I have to pull a stunt on you that I always hated when my math
professors did it on me, because you sort of have to know what the result is before you can find the way to get there. An
attemp at explaining of why and how to do this has been deferred to the appendix, along with some alternative derivations.

4Of concern would typically be the absolute error in the instantaneous output current for CV processing (after I-V-conversion)
and total harmonic distortion (THD) for audio signal processing.
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the first part of the above expression as the transconductance, accompanied by some mumbling
about small input voltages. The transconductance is however strictly proportional to the tail
current, which provides the function of a two-quadrant multiplier. This is typically used to set and
modulate the transconductance, which is useful for instance for building VCO and VCF in analog
synthesizers.

Making the tail current proportional to absolute temperature (which can be done using a ∆VBE-
Arrangement) gets rid of the the temperature dependence in the first part of the expression. Of
course this just makes the transconductance for zero input a constant and thus does not compensate
the temperature dependence for any useful circuit.

2.1.2 Input Diode Linearization

Making a better OTA involves flattening the transconductance characteristic to achieve a wider
input range and of course removing the temperature dependence. Flattening the transconductance
curve generally reduces the peak transconductance for any given circuit, however. Both objectives
can be achieved by connecting a “differential pair” of diodes to the inputs, fed by another current
source. In short, the diodes in connection with a resistive input network will provide a compression
of the input voltages to the differential transistor pair which expands them into a current, while
through their matching to the input transistors the temperature dependence of the inputs is also
canceled.5

VD−

VIn− VIn+

VD+

Figure 3: Principle of Input Diode Linearization

Let’s look at the loop made up of the linearizing diodes6 and the base-emitter diodes of the
differential pair. Now for the voltages in that loop7

VD+ + VI+ = VD− + VI− (23)

holds with some reordering and expressing it in terms of the currents this becomes

VT ln
I+

IS+
− VT ln

I−

IS−
= VT ln

ID−

IS,D−
− VT ln

ID+

IS,D+
. (24)

When all elements are matched, the saturation currents are identical and with some further sim-
plification we get

ln
I+

I−
= ln

ID−

ID+
, (25)

5This is an example of a translinear circuit, whose principle is that the input-output relations are linear even though potentially
none of their internal nodes bear any linear relationship with the inputs or outputs.

6In an integrated circuit these diodes generally will be transistors with the base and collector shorted. Diode connected transistors
have a diode characteristic that is close to ideal over a wider current range and provide better matching than simple diodes.

7The linearizing diodes can also be put in parallel to the base-emitter diodes (like it is done in the CA3280). The operating
principle is not changed by that modification – all equations from (25) on are indeed identical, but the biasing requirements
are different.
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which means that the current ratios must also be equal:

I+

I−
=

ID−

ID+
. (26)

With (9), (13) and

ID = ID− + ID+ (27)
IIn = ID− − ID+ (28)

(which again assumes β� 1) we can rewrite the currents

I+ =
1

2
(I0 + IOut) (29)

I− =
1

2
(I0 − IOut) (30)

ID+ =
1

2
(ID − IIn) (31)

ID− =
1

2
(ID + IIn) (32)

and simplify further to

I0 + IOut

I0 − IOut
=

ID + IIn

ID − IIn
(33)

(I0 + IOut)(ID − IIn) = (ID + IIn)(I0 − IOut) (34)
I0(ID − IIn) + IOut(ID − IIn) = I0(ID + IIn) − IOut(ID + IIn) (35)

IOut(ID − IIn + ID + IIn] = I0(ID + IIn − ID + IIn) (36)

and finally arrive at

IOut =
I0

ID
IIn where |IIn| < ID. (37)

Looking at the last equation we find of course that we have a current amplifier8 rather than
a transconductance amplifier as the independent variable is now a current instead of a voltage.
On the positive side, the temperature dependence of the transconductance is compensated. Of
course one can use a resistor in front of each input for the voltage to current conversion, which
should be dimensioned so that the maximum input current does not exceed the diode bias current
at the maximum input voltage. It can also be observed that the maximum transconductance is
achieved for vanishing diode biasing. While it appears at first that the transconductance can be
made infinitely large, this is not the case as the input range is also zero at that point. We know of
course that for vanishing diode bias current the OTA reverts to its non-linearized form.

When driven by voltage signals, resistors can be used to provide voltage to current conversion
(the potential at the bases of the input transistors is almost constant). With equal input resistors
the transconductance becomes

IOut =
I0

RInID
VIn where |VIn| < RInID, (38)

which also means that compensating for temperature is not as easy as it looked at first, depending
on how you produce the currents for the tail and diodes. Overdriving a linearized OTA at the
input more or less just clips the signal. Changes in the input potential that are effected by changes
in either I0 or ID produce common mode inputs and are thus suppressed at the output as long as
the common mode input range is not exceeded. The driving stage should be designed with careful
consideration of the comparatively low and non-constant input impedance of a linearized OTA.

8The equation just derived may look familiar: it is the very same as for the famous Gilbert cell, where gain is the ratio of inner
to outer current.
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2.2 The FET OTA

An OTA could obviously also be implemented in CMOS technology by replacing the current mirrors
and the input differential pair with their FET equivalents. Assuming ideal current mirrors and
current sources again, the only real change is the switch to a FET differential pair.

ID− ID+

IS− IS+

I0

VIn− VIn+

Figure 4: FET Differential Pair (with nMOS enhancement FET, biasing not shown)

Even though to the best of my knowlegde there is no IC that implements a single, dual or quad
FET OTA, these OTA are probably the most common analog circuit in existence - almost all
continous-time analog circuitry in modern CMOS integrated circuits is based on OTA building
blocks.

2.2.1 The FET differential pair

We notice that the input resistance is infinite and hence there is no input current. Also, the
source and drain currents are equal if we neglect leakage currents. The drain current of the nMOS
enhancement FET with a threshold voltage of Vth in pinch-off regime is with some simplifying
assumptions

ID = IDsat

(
VGS

Vth
− 1

)2 ∣∣ VGS ≥ Vth (39)

Thus,

I0 = I+ + I− = IS+ + IS− = ID+ + ID− (40)
Vin = VGS+ − VGS− = Vin+ − Vin− (41)

and with the transforms

i? =
I?

IDsat
(42)

v? =

(
V?

Vth
− 1

)
≥ 0 (43)

î? =
I?

I0
≤ 1 (44)

the equations

I+ = ID+ = IDsat+

(
VGS+

Vth
− 1

)2

(45)

I− = ID− = IDsat−

(
VGS−

Vth
− 1

)2

(46)
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can be written more simple (and hopefully more clear) as

iD+ = v2
GS+ (47)

iD− = v2
GS− (48)

Transformation and substitution into (41) yields under the assumption of matched transistors

vin + 1 =
√

i+ −
√

i− =
√

i0

(√
î+ −

√
î−

)
. (49)

Writing out the output current and using the identity (
√

a −
√

b)(
√

a +
√

b) = (|a| − |b|) together
with (49) provides

iOut = i+ − i−

= (vin + 1)
(√

i+ +
√

i−

)
= (vin + 1)

√
i0

(√
î+ +

√
î−

) (50)

The maximum input range is therefore ±
√

i0Vth, the signal is clipped beyond that point as the tail
current flows through just one transistor in the differential pair and the other is closed. Recalling
that

î0 = 1 = î+ + î− (51)

we can substitute

1 = sin2 x + cos2 x (52)

and use trigonometric identities to observe√
î+ +

√
î− = sin x + cos x =

√
2 sin

(
x +

π

4

) ∣∣∣∣ x ∈
[
1,
√

2
]

(53)√
î+ −

√
î− = sin x − cos x =

√
2 sin

(
x −

π

4

) ∣∣∣∣ x ∈ [−1, 1] (54)

Through substitution of (54) into (49) we solve for

x = arcsin
(

vin + 1√
2i0

)
+

π

4
(55)

With (50), (53) and the identity sin
(
x + π

2

)
= cos x we can finally express the output current as a

function of input voltage

iOut = (vin + 1)
√

2i0 cos
(

arcsin
vin + 1√

2i0

)
(56)

IOut = 2I0
Vin

Vth

√
2i0

cos
(

arcsin
Vin

Vth

√
2i0

)
= 2I0z cos(arcsin z)

∣∣∣∣ z =
Vin

Vth

√
2i0

≈ 2I0z

∣∣∣∣ z� 1

(57)

which gives

gm =
dIOut

dVIn
=

dIOut

dz

dz

dVIn
≈
√

2I0IDsat

Vth
=

IDsat

Vth

√
2i0 (58)
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This means that the gm of a FET OTA is not proportional to the tail current9 as for the bipolar
OTA, but rather to its square root. As long as one wants exponential control, it is sufficient to
double the scale factor. Then each octave of transconductance translates into two octaves of tail
current. The square law characteristic of the FET is not nearly as precise as the exponential
characteristic of a bipolar transistor, so it is challenging to maintain tracking over many octaves.

For linear control, one could conceivably rig up a circuit with another matched FET to deliver
a current proportional to the input voltage (the biasing may be somewhat tricky). Also, the input
range of the FET OTA varies considerably with the transconductance, to keep linearity to one
percent the input range again has to be in the Millivolt range.

9The same result is more laboriously arrived at via developing the full expression into a power series, differentiating that and
truncating to the linear term. The quadratic term is slightly more than 1.5 times larger than that of the equivalent power
series for the sech2 part of the expression for the bipolar OTA.
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3 Applications

Please refer to the datasheets for the various commercial OTA IC for a number of interesting
circuits. In this (still incomplete) section the principle behind some of these circuits can hopefully
be clarified somewhat.

3.1 The OTA as voltage controlled resistor

If you have a resistor that is referenced to the virtual ground of an operational amplifier, then it
is easy to use an OTA to make that resistance voltage controlled. The resistor is replaced by a
voltage divider to the real ground so that the divider puts out about 5 mV, which gets connected to
the positive input of the OTA. The negative input is connected to ground as well, while the output
of the OTA goes into the virtual ground of the operational amplifier. The apparent resistance can
then be controlled by adjusting I0 accordingly.
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4 OTA IC

To facilitate easier analysis of the schematics in the various datasheets, the current mirrors are
shown as ideal elements. Unfortunately most of these IC are discontinued as of May 2005.

The bipolar current mirrors come in two flavors: the most simple one is named after late (and
legendary) Robert J. (Bob) Widlar and uses just two transistors. The base current of the transistors
is not compensated for, so this mirror requires a relatively high transistor beta to work precisely
enough. The second one, named after George Wilson, uses another transistor to compensate for
the base current and improve dynamic output impedance at the expense of output voltage range.
Actually there is another variant of the Wilson mirror that adds a fourth transistor that works
even better at high current levels.

4.1 The SSM2040

The SSM2040 is actually a quad-section gmC filter chip, but it has the simplest OTA cell possible.
There is just the differential pair, the tail current source (here with an exponential V-I converter
to facilitate V/octave scaling) and a single Widlar current mirror.

This arrangement, while simple produces a significant output level shift with varying tail cur-
rent and the output voltage range is not symmetric inbetween the supply rails. Therefore this
structure is used only when a discrete OTA is built where the number of individual devices is of
utmost importance or as building block inside an IC where the input and output levels can be well
controlled.

In+

In−

Iabc

Out

V+

V−

SSM2040

Figure 5: SSM2040
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4.2 The CA3080

The CA3080 is probably the most simple standalone bipolar OTA that you can find. It consists of
only the input differential pair and the current mirrors that bias the input transistors and produce
the output current.

In particular, the mirror for the tail current is a simple Widlar type and emitter degeneration
cannot be used as the tail current can vary widely. It is therefore important to keep the differential
and current inputs at the same potential, otherwise the transconductance gets modulated by the
common mode input voltage. Unfortunately the datasheet does not show the circuit for measuring
the CMRR, but it appears that the common mode amplitude was low for the test and the input
potentials about the same.

The output current mirrors are all Wilson type, the pnp mirrors also use a Darlington pair for
the cascode transistor to get around the low beta of the pnp transistor in this process.

In+

In−

Iabc

Out

CA3080

V−

V+

Figure 6: CA3080
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Iabc

In−

In+

Out

V+LM13700

Id

V−

Figure 7: LM13600/LM13700 OTA section

4.3 The NE5517

The OTA section of the NE5517 is identical to the LM13700. The buffer bias is almost con-
stant, only somewhat varied with the tail current, presumably to compensate the change in output
impedance of the OTA section. The datasheet consequently claims “constant impedance buffers”.
Since all figures in the datasheet are identical I originally suspected that the missing bias network
in the datasheet of the LM13700 looks the same. However, as detailed below the biasing circuit of
the LM13700 buffer is now known and it is different from the one shown in the NE5517 datasheet.
Unless you don’t use the output buffers at all, these differences may be important in your circuit,
so you should be wary of distributors replacing one type for the other.

4.4 The LM13600/LM13700

The LM13700 improves upon the CA3080 by adding linearization to the OTA inputs. While this
improves the linear input range greatly, it lowers input impedance and changes the distortion
properties. It uses a Wilson mirror also for the tail current. Since a Wilson mirror needs more
voltage headroom, the common mode voltage range is reduced on the negative rail and the potential
for the tail current input is increased in comparison with the CA3080, which may become important
in certain applications.

The LM13600 and the LM13700 differ only in the way the bias current for the buffer (which
is not shown here) is produced. The LM13700 uses a constant bias current according to the
datasheet, while in the LM13600 the bias is a mirrored copy of the tail current. This can lead to
CV feedthrough to the output when the tail current is changed rapidly. However the datasheet for
the LM13700 does not show any biasing of the buffer at all, so one can only speculate how it is
achieved. What is clear is that there must be some biasing and the only hint one can find of that is
some mumbling about “controlled impedance buffers”. Meanwhile Don Sauer, one of the “fathers”
of the LM13600 design has posted the missing details on his website [2], so it no longer remains a
mystery.

13

Draft Copy! Do not make publically available copies (aka mirroring). – July 6, 2008



Figure 8: An npn (left) and pnp (right) transistor

Don Sauer also gave permission to use his chip micrograph of the LM13600 (he even sent a larger
version of the picture). This and the fact that the transistors used in this technology are very large
compared to contemporary technologies offers the opportunity to see how the circuit maps to the
layout. The bond pads (where the wires to the pins will be attached) and the ouput transistor of
the buffers are relatively easy to find and that provides us with enough information to label the
pads with their pin numbers on the package. You could probably trace the entire circuit with just
the schematic and this much information in hand (there are a few surprises, but you can work
around those), but it is a lot easier if you know one or two things about the technology used.

Figure 9: One half of the LM13600

The LM13600 is done in a planar bipolar technology with junction isolation and a single level
of metallization (the “wires”). This type of technology starts with a lightly p-doped silicon sub-
strate10. Then an n-type diffusion is created in certain places11 and the surface is overgrown with
an n-type epitaxial silicon, creating buried regions of high n-type doping that are called n-buried
layer. These regions are isolated by a p-type diffusion with high doping from the surface through
the n-epitaxial layer into the substrate, this forms a pn-junction and hence the name junction
isolation. If the same p-type diffusion12 is done inside a buried n-region, it will not reach the
substrate and is therefore completely isolated by the n-tub it sits in. Another n-type diffusion, yet
more highly doped but again more shallow is used to either make contact to the n-tub13 (in places
where there is no second p-diffusion) or create another n-region inside the isolated p-region. Once
this is all done, you make contacts to a) the n-tub and call it the collector, b) the isolated p-region
and call it the base and the n-region inside the p-region and call it the emitter – and there is your
npn transitor. In fact you have created many npn transistors, since each isolated region will have

10A much more detailed step-by-step explanation with cross-sections is available in chapter 1 of [3].
11This involves opening a window in the oxide on top of the silicon through which the dopant can enter.
12In some technologies the isolation diffusion is done seperately.
13To reduce the resitance from this contact to the n-buried layer, in some technologies another n-type diffusion called n-sinker

will be employed for this function.
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Figure 10: LM13600 chip micrograph (with permission of Don Sauer)

one. Since you have many transistors and not just one, to maintain isolation between them you
must also make a contact outside them to the p-isolation or substrate and put this to the most
negative potential anywhere in the circuit to keep the isolation junctions in reverse bias. Alas,
there’s no “real” pnp transistor (that would require to reverse all the doping polarities) – but if
you place two isolated p-type regions very close to each other, they will act as a pnp transistor.
This is called a lateral pnp transistor, but these aren’t as good as the npn; in particular they are
far slower and have less current gain. Since all diffusions are accompanied by etching of windows
into the oxide already present as well as more oxidation to drive in the dopant and the amount of
doping varies the oxide thickness too, each region of the chip will have a different oxide thickness
depending on which doping it has received. Due to interference of incident and reflected light, thin
transparent films have a color depending on their thickness, so each of these regions will have a
different appearance14.

So, in the chip micrograph the greenish regions are p-type, the brownish frames are npn collectors
or pnp bases, the greenish stuff inside those frames is the npn base or the pnp collector and the
brownish circles are the npn bases. If you look very closely you’ll see that for the pnp transistors
these aren’t circles, but donuts. Inside you’d find another greenish p-region acting as the pnp
emitter, but you cannot see this because there’s always metal on top. You’ll also note a lot of
things that look like depressions and they are – this is where silicon dioxide has been etched away
to either let a diffusion take place or to make contact to the underlying silicon. In figure 8 an npn
and pnp transistor are shown side-by-side (they are Q4 and Q7 in the datasheet). The window for
the buried n-diffusion is tinted green, p-diffusion light red, n-epi light blue and n-emitter as dark
blue, while contact windows are dark grey. This pair of transistors (as well as Q5 and Q11) uses
a buried connection for connecting the collector of the npn to the base of the pnp, which is why
they share the buried n-diffusion. In figure 9 the first half of the chip is shown and the wiring has
been colored: red tint for positive supply, blue tint for negative supply and grey for everything else.
Take note of the substrate contact next to the negative supply pin and the buried wiring for the

14You can find tables which detail the color vs. thickness in [2].
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positive supply that crosses under the negative supply as well as the connection of the bias current
source for the Darlington buffer15. Finally figure 10 shows the complete chip in all it’s glory. A
few things to note: while the two OTA sections are almost mirror copies of each other, there is
a slight asymmetry in the power connection. Also the label on the chip actually says “11600A”
instead of “13600” as there were several grades of this chip tested to different specifications, but
produced from the same die. The set of letters between pad 1 and 2 are the revision letters for all
the five layers that are needed in this process (all at their first revision). There is an alignment
mark between pad 5 and 6 and a resolution or measurement target between the buffer output
transistors (CD probably stands for “critical dimension” and the barely visible structure next to it
would then be where the resolution gets checked).

15This transistor incidentally is smaller than the other npn transistors and hence the current mirror ratio is less than one - the
datasheet neglects to mention that. With the information given in [2] the mirror ratio computes to 1 : 4 1

6
.
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Figure 11: CA3280

4.5 The CA3280

The CA3280 also adds linearization, but in a slightly more complicated way then the LM13700
that maximizes the common mode input range when the linearization diodes are used. It also uses
a Wilson mirror for the tail current. The output mirrors are not shown in detail on the datasheet.
While it’s safe to assume they’re Wilson types, it is hard to know exactly if they use Darlington
pairs. The relatively wide bandwith leads me to assume that they’re plain pnp transistors like the
LM13700, however.

4.6 The “Diamond Transistor” OPA660

The OPA660 has a different tack on the OTA theme. The negative input is a low impedance
terminal, in effect becoming both an input and a (differential) output. Burr-Brown tauted the
device as an “ideal” transistor.

4.7 The MAX435 / MAX436

The MAX435 is an OTA with differential outputs and a gain setting network, the MAX436 drops
the differential output and has a different internal gain factor. The maximum output current is
controlled by a set current like the conventional OTA. It is unclear whether these OTA could be
used without the gain setting impedance and if the transconductance would then be controllable
through the set current.
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5 Appendix

5.1 The hyperbolic half-argument conundrum

Deriving a closed form expression for the transconductance requires two steps: step one is to
recognize that there’s a single hyperbolic function to uncover and step two is to see that the
argument of that function ought to be half of what you’ve been dealing with up to now. Certainly
both of these steps can be introduced at various points along the derivation, thus yielding different
versions. All these versions have in common that at some point you’ll need add a “nutritious zero”
or multiply a “nutritious one”, which can often be motivated by symmetry considerations.

The trigger for step one is that whenever you see something that looks like it could be brought
into the form ex ± e−x (this can be quite hard to see, even though it comes up surprisingly often),
you can save yourself lots of work by re-writing your equation in terms of hyperbolic functions
and then working on these using a set of convenient equivalencies and relations between hyperbolic
functions, which can be looked up in any decent book on higher mathematics. Just like the normal
trigonometric functions the hyperbolic trigonometric functions have special relations to each other
when the argument is multiplied or divided by integers, these are especially useful for double or half
the argument. Looking up these equivalencies at the right time saves you the bother of actually
carrying out a large part of the otherwise protracted derivations.

5.2 Direct introduction of the half-argument

If you knew in advance that you need the half-argument, this alternative (and a bit shorter)
derivation of (20) (provided by Ian Fritz) results:

IOut = I0

(
exp VIn

2VT

exp VIn

2VT

1

1 + exp−VIn

VT

−
exp− VIn

2VT

exp− VIn

2VT

1

1 + exp VIn

VT

)

= I0

(
exp VIn

2VT

exp VIn

2VT
+ exp VIn

2VT
exp −2VIn

2VT

−
exp −VIn

2VT

exp −VIn

2VT
+ exp −VIn

2VT
exp 2VIn

2VT

)

= I0

exp VIn

2VT
− exp −VIn

2VT

exp VIn

2VT
+ exp −VIn

2VT

IOut = I0 tanh
VIn

2VT
.

The different signs of the multiplicands can be motivated by symmetry considerations.

5.3 Substituting One

The second alternative derivation comes from the lecture notes on analog multiplication by Paul
Junor. It starts off with a slightly different reduction of the common denominator, while the
introduction of the half-argument can again be motivated by symmetry considerations.

IOut = I0

(
1 + exp VIn

VT

)
−
(
1 + exp−VIn

VT

)
(
1 + exp VIn

VT

)
+
(
1 + exp−VIn

VT

)
Substituting the identity

1 = exp−
x

2
exp

x

2

gives

IOut = I0

(
exp− VIn

2VT
exp VIn

2VT
+ exp 2VIn

2VT

)
−
(
exp− VIn

2VT
exp VIn

2VT
+ exp−2VIn

V2T

)
(
exp− VIn

2VT
exp VIn

2VT
+ exp 2VIn

2VT

)
+
(
exp− VIn

2VT
exp VIn

2VT
+ exp−2VIn

2VT

) ,
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which enables the following extraction

= I0

exp VIn

2VT

[
exp− VIn

2VT
+ exp VIn

2VT

]
− exp− VIn

2VT

[
exp VIn

2VT
+ exp− VIn

2VT

]
exp VIn

2VT

[
exp VIn

2VT
+ exp− VIn

2VT

]
+ exp− VIn

2VT

[
exp− VIn

2VT
+ exp VIn

2VT

] ,
dropping the terms in brackets gives

= I0

exp VIn

2VT
− exp− VIn

2VT

exp VIn

2VT
+ exp− VIn

2VT

,

which interpreted as hyperbolic function reads

= I0

sinh VIn

2VT

cosh VIn

2VT

IOut = I0 tanh
VIn

2VT
.

5.4 Yet another go

Tim Stinchcombe had yet another proposal (borrowed in part from [4]), starting with developing
an expression for the individual collector currents via (3) and with (9) – or we can simply take it
out from the first part of (16):

I+ =
I0

1 + exp−VIn

VT

motivated by the fact that with no signal each branch of the differential pair sees half the tail
current we pull this out as the scaling factor

=
I0

2

2

1 + exp−VIn

VT

and substitute the boring 2 with something more creative

=
I0

2

(
1 + exp−VIn

VT

)
+
(
1 − exp−VIn

VT

)
1 − exp−VIn

VT

=
I0

2

(
1 +

1 − exp−VIn

VT

1 + exp−VIn

VT

)

and via one of the addition theorems we find

I+ =
I0

2

(
1 + tanh

VIn

2VT

)
and due to symmetry

I− =
I0

2

(
1 − tanh

VIn

2VT

)
and finally we arrive via (13) at

IOut =
I0

2

(
1 + tanh

VIn

2VT

)
−

I0

2

(
1 − tanh

VIn

2VT

)
IOut = I0 tanh

VIn

2VT
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